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Abstract-Nonsimilarity solutions for mixed convection from a vertical Rat plate embedded in a porous 
medium are reported for two surface heating conditions: variable wall temperature (VWT) and variable 
surface heat flux (VHF) of the power-law form. The entire mixed convection regime is divided into two 
regions. One region covers the forced convection dominated regime and the other one covers the free 
convection dominated regime. The governing equations are first transformed into a dimensionless form by 
the nonsimilar transformation and then solved by a finite-difference scheme. Four nonsimilarity parameters 
are introduced. The parameters Ra,/Pe, and Ra:/Pe: ’ characterize the effect of buoyancy forces on the 
forced convection for the VWT and VHF cases, respectively; while the parameters Pe,/Ru, and Pr,/Ra:“’ 
characterize the effect of forced flow on the free convection for VWT and VHF cases, respectively. 
Numerical results for both heating conditions are presented. Correlation equations for the local and 

average Nusselt numbers are also presented. 

INTRODUCTION 

CONVECTIVE heat transfer along vertical impermeable 
surfaces in a porous medium has many engineering 
applications in geothermal reservoirs and petroleum 
industries. The problem of free convection heat trans- 
fer from a vertical flat plate in fluid saturated porous 
media was studied by Cheng and Minkowycz [I] who 
obtained similarity solutions for a class of problems 
where the wall temperature is a power function of the 
height of the plate. However, the flow and thermal 
fields in mixed convection from surfaces in a porous 
medium are nonsimilar, and the local similarity and 
nonsimilarity solution methods have been employed 
to obtain solutions for nonsimilar natural and mixed 
convection problems in porous media [2, 31. Because 
some of the higher order terms in the governing equa- 
tions are neglected in the local similarity and non- 
similarity models, the solutions from these models are 
approximate in nature. A more accurate solution for 
nonsimilar boundary layer systems can be obtained 
by using a finite-difference solution method [4, 51, 
which was used recently by Aldoss et al. [6,7] to solve 
the problem of mixed convection over an impermeable 
horizontal plate in porous media, under the con- 
ditions of variable surface heat flux and variable wall 
temperature in the power-law form. 

In the present paper, mixed convection from a ver- 
tical flat plate embedded in saturated porous media is 
analyzed for power-law variation of the wall tem- 
perature or power-law variation of the surface heat 
flux on the plate. In each case, two different trans- 
formations are applied to cover the entire mixed con- 
vection regime. In the first transformation, the non- 

similarity parameter & = RuJPe, for variable wall 
temperature (VWT) or ir = Ru~/Pe;“’ for variable 
heat flux (VHF) is found to represent the buoyancy 
effect in the forced flow dominated mixed convection 
regime. In the second transformation, the non- 
similarity parameter 5. = PeJRn, for variable wall 
temperature (VWT) or c, = Pe,/Ru:“’ for variable 
heat flux (VHF) is found to represent the forced flow 
effect in the buoyancy dominated mixed convection 
regime. The governing systems of equations are first 
transformed into a dimensionless form and the result- 
ing equations are then solved by a finite-difference 
method. Numerical results are obtained for some rep- 
resentative exponent values of the power-law variation 
in either the wall temperature or the surface heat flux. 

ANALYSIS 

Consider mixed convection from an impermeable 
vertical plate embedded in a saturated porous 
medium. Two surface heating conditions will be con- 
sidered in the analysis : (I) a power-law variation of 
the wall temperature, T,,,(X) = T, +a~“, and (2) a 
power-law variation of the surface heat flux, qw = hx”‘, 
where u and b are constants and m and n are the 
exponents. The x coordinate is measured from the 
leading edge of the plate and the ~1 coordinate is 
measured normal to the plate. The gravitational accel- 
eration g is acting downward in the direction opposite 
to the s coordinate. The Darcy model which is valid 
under the conditions of low velocities and small pores 
of porous matrix [8] is used in the analysis. Also. the 
properties of the fluid are assumed to be constant and 
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NOMENCLATURE 

.f>.fi dimensionless stream functions for the .Y. J’ axial and normal coordinates. 
case of VWT 

F. F, dimensionless stream functions for the Greek symbols 
case of VHF u effective thermal diffusivity of saturated 

/l(X) local heat transfer coefficient porous medium 
I; average heat transfer coefficient. B volumetric coefficient of thermal 

(l/L) s”o h(s) ds expansion 
k thermal conductivity 6 boundary layer thickness 
K permeability coefficient of the porous V? rll pseudo-similarity variables for the 

medium VWT case 
L length of the plate 0, 0, dimensionless temperatures for the 
Nut local Nusselt number, h.ujk VWT case 
Nu _ average Nusselt number, hL/k 0, 0, dimensionless temperatures for the 
PC, local Peclet number, u,\-/cc VHF case 
4, local surface heat flux P dynamic viscosity 
Ra, local Rayleigh number for the VWT 1’ kinematic viscosity 

case. gp[T,(.u) - T,]Ks/(va) ir. ir nonsimilarity parameters for the forced 
Ra: modified local Rayleigh number for the convection dominated regime 

VHF case, g/lqw(.u)Ks2/(kva) cm in nonsimilarity parameters for the free 
T temperature convection dominated regime 
TX free stream temperature P fluid density 
T, wall temperature TW local wall shear stress 
u. c velocity components in X- and y- * stream function. 

direction 
u I free stream velocity Subscripts 
Y, Y, pseudo-similarity variables for the f forced convection dominated condition 

VHF case n free convection dominated condition. 

the porous medium is treated as isotropic. Under the 
Boussinesq and the boundary layer approximations, 
the governing equations can be written as [I] 

a'$ K aT 
dy’= yyPSP& 

d’T ar aT 
adJ”=ujg+L’4,). (3) 

In the equations above, the stream function I,LI satis- 
fies the continuity equation (I) with u = a$/ay and 
v = -al(//a.u, where u and v are Darcy’s velocities in 
the x and y directions ; T is the temperature; p, p 
and /I are the density, dynamic viscosity and thermal 
expansion coefficient of the fluid; and K and o! are, 
respectively, the permeability and equivalent thermal 
diffusivity of the porous medium. 

The boundary conditions for the present problem 
are 

v = 0, T= T,(x) = T,+ax” 

or qw = -k(aqay),.= o = bx" at y = 0 

wall temperature and m = 0 corresponds to the case 
of uniform surface heat flux. 

Next, the system of equations (2)-(4) will be trans- 
formed into dimensionless forms, separately for the 
case of power-law wall temperature variation and 
power-law surface heat flux variation. 

Power-law variation of wall temperature T,(x) = 
T, + ax” 

A. Forced convection dominated regime. Equations 
(2)-(4) can be transformed from the (x, y) coordinates 
to the dimensionless coordinates [t&y), q(x,y)] by 
introducing 

q = f Pe,ij2, tr = c&x) (5) 

II/ = aPd”f(L rlh 
T-T, 

0th rl) = Tw(x) _ T,. (6) 

Substituting equations (5) and (6) into equations (2)- 
(4), one can obtain the following system of equations : 

f” = (,01 (7) 

u+u,,T+T, as y+c~. (4) 

Note that n = 0 corresponds to the case of uniform 
O”+ ;/O’-nf’0 = n+‘g -O’$ (8) 
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with the boundary conditions 

a/ 
/IL 0) + 2n5,’ (5,., 0) = 0 

xr 
or f(5f. 0) = 0, 

nc<,. 0) = 1. .f’(<f. ccl) = I. O(&, co) = 0 (9) 

where 

I RU, 
Sr = pp, (10) 

with Pe, = U, s/a and Ro, = gp[T,(s) - T,]Kx/\la, 
and the primes denote partial differentiations with 
respect to q. 

In the above system of equations, the parameter 
5,. represents the buoyancy force effect on forced 
convection. The case of cr = 0 corresponds to pure 
forced convection and the limiting case of lr = c% 
corresponds to pure free convection. 

Some of the physical quantities of interest include 
the velocity components u and L’ in the s and J 
directions, the wall shear stress rWr defined as 
rw = p(aLl/ay)y= “, and the local Nusselt number 
Nu, = /lx/k, where h = ~,/[T,(.Y) - r,]. They are 
given by 

(11) 

P’u, T, = 
( > y Pe.J’2.f(trT 0) (13) 

Nu, = - Pe: ‘O’(<, 0). (14) 

The average Nusselt number Nu can be evaluated by 
finding the average heat transfer coefficient h from the 
local Nusselt number expression, equation (14). The 
final expression is 

(15) 

where PeL and tr,. are values of Pe., and cr at s = L. 
B. Free convection dominated regime. For this case, 

the following dimensionless variables are introduced 
in the transformation : 

(17) 

Substituting equations (16) and (17) into the govern- 
ing equations (2)-(4) leads to 

f’; = e; (18) 

n+l of;+ yj,O’,-t?f;O, = n[. 
( 

, a/‘, ,801 
Ol$/./I~ (19) 

> 

(tj+ 1 ).f,(5,, 0) - 2t& $C”>O) as = 0 or f,(5,, 0) = 0, ’ ” 
O,(<“,O) = 1. ./Y(<,, m) = ;,, O,(<“, co) = 0 

(20) 

where 

Pe, ;, zz - 
Ra., 

(21) 

and the primes in equations (18)-(20) denote partial 
differentiations with respect to 4 ,. 

Note that the [, parameter here represents the 
forced flow effect on free convection. The case of 
5, = 0 corresponds to pure free convection and the 
limiting case of 5, = UJ corresponds to pure forced 
convection. 

The velocity components u and L’, the wall shear 
stress, and the local Nusselt number for this case have 
the following expressions 

L’ = 

u = ; R4-i (5m ‘I I) (22) 

“:.f, + q q ,.fl -t& $ 
n 

(23) 

r, = $ 
0 

Ra;“‘f’;(&,O) (24) 

Nu, = - Ra,.“O’,(;,, 0). (25) 

The average Nusselt number Nu is 

X 
s’ 

% [ - t3’,(<,, 0)]5,‘3”+ ‘)jzn d5, (26) 
0 

where Ra,. and <,,,- are values of Ra, and <,, at s = L. 
It is noted that the solutions of the two systems of 

equations, equations (7)-(9) and (18)-(20) will cover 
the entire mixed convection regime. The relationship 
between tr and 5. is 5. = 5; ‘. 

Power-law variation ojswface heat flux, qw (x) = bs”’ 
A. Forced convection dominated regime. For this 

case. let the dimensionless variables be 

Y = % Pe.J”, [r = [r(x) 

9 = ctPe.J”F([, Y), O(&, Y) = (‘,-,[$~~“. 

(28) 
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Substitution ofequations (27) and (28) intoequations 
(2)-(4) then yields 

F” = &@’ (29) 

F(ih 0) + PI+ l)irg (irr 0) = 0 or FCC,, 0) = 0, 
f 

@‘(in 0) = - 1, F(&, co) = 1, O([, co) = 0 

(31) 

where 

(32) 

with Ra’ = g/?qw(.x)Ks2/kvu and the primes now 
denote partial differentiations with respect to Y. 

The nonsimilar parameter ir represents the buoy- 
ancy force effect on forced convection. The case of 
cr = 0 corresponds to pure forced convection and the 
limiting case of ir = cc corresponds to pure free 
convection. 

The velocity components u and u, the wall shear 
stress, and the local Nusselt number for this case have 
the expressions 

I.4 = u,F’(i, Y) (33) 

(36) 

The average Nusselt number NM can be expressed as 

- Nu = 

(37) 

where Pe, and &, are values of PqV and cr at x = L. 
B. Free convection dominated regime. In this regime, 

one introduces the dimensionless variables 

Y Y, =-Rat.“), (” = C”(X) 
x .’ (38) 

IL = aRa: “3F,(i,, Y,), 
* 113 

@,([“, y,) = u- Tm)Ra-x 
qwcw~ . 

(39) 

The transformation of equations (2)-(4) then results 
in 

F; = @ ‘, (40) 

> 
(41) 

(~72+2)F,(~,.o)-(2rr1+I)~~~(~~,o) = 0 
n 

or FIG OL 

@‘,(i,,O) = -1, F;(i,,m) =i,, @,([.,a) =0 

(42) 
where 

(43) 

and the primes denote partial differentiations with 
respect to Y, 

The [. parameter here represents the forced flow 
effect on free convection. The case of [. = 0 cor- 
responds to pure free convection and the limiting case 
of [, = co corresponds to pure forced convection. 

The velocity components II and v, the wall shear 
stress. and the local Nusselt number are now given, 
respectively. by 

u = :~@3~;(5,. Y,) (4) 

lJ= - i(m+Z)F,+i(m-l)Y,F; 

- :(2m+l)i”$ (45) 
n 1 

(47) 

The average Nusselt number Nu is 

Nu=- 
3 

*l/3 Cm+ 2)ll2m+ I) ~ Ra,. L,, 2mfl 

G (48) 

where Rat and i,, are values of Ra,: and [, at x = L. 
A combination of the above two treatments will 

then cover the entire regime of mixed convection. The 
relationship between & and <, is [, = [; 2/3. 

The systems of equations for the forced convection 
dominated regime under the power-law variation of 
wall temperature, equations (7)-(9), and under the 
power-law variation of surface heat flux, equations 
(29)-(31), are valid for 0 < rr < co and 0 < & < co. 
They were solved by the finite-difference method as 
described by Cebeci and Bradshaw [4]. However, 
there was difficulty in finding the convergent solutions 
of equations for the free convection dominated regime 
for both heating conditions, i.e. equations (18)-(20) 
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and (40)-(42). Thus. for the case of free convection 
dominated regime, solutions were obtained only for 
pure free convection from the system of equations 
(18)-(20) or (40)-(42) with 5. = 0 or <, = 0 by the 
Runge-Kutta numerical integration scheme. A com- 
bination of the two solutions, one for the forced con- 
vection dominated regime and the other for pure free 
convection, then covers the entire convection regime 
for both power-law variations of the wall temperature 
and the surface heat flux. 

RESULTS AND DISCUSSION 

Representative numerical results for both cases of 
variable wall temperature and variable wall heat flux 
will be illustrated and discussed in this section. The 
range of n or m values for which the present problem 
is physically realistic can be found following the argu- 
ment used by Cheng and Minkowycz [I]. Since the 
wall temperature begins to deviate from T, at .Y = 0 
and convective flow must start at this point, both u 
and 6, the streamwise velocity component and the 
boundary layer thickness, must increase or at least 
remain constant with respect to x. From equations 
(22) and (44) one finds that u varies with .<’ or 
x”“‘+‘)‘~. Also, from equations (16) and (38) the 
boundary layer thickness 6, which is of the order of 
y, varies with X”-“I’? or .Y(‘-“““. Thus, the above 
conditions can be satisfied if 0 < n < I for the variable 
wall temperature case or -0.5 < m < I for the vari- 
able surface heat flux case. The numerical solutions 
were carried out for values of n and m within the 
above range. 

Power-law oarialion of wall temperature 
Results for the temperature and velocity profiles, 

O(<,q) andy(&,q), are shown in Figs. 1 and 2 for 
different values of tr and n. Figure 1 shows that for a 
given value of&the thermal boundary layer thickness 
decreases and the temperature gradient at the wall 
increases when n increases, resulting in a higher heat 
transfer rate at a higher value of n. In addition, the 

0 I 2 3 4 5 
II 

FIG. 1. Dimensionless temperature profiles at selected values 
of&and n (VWT case). 

60 

FIG. 2. Dimensionless velocity profiles at selected values of 
cr and n (VWT case). 

wall temperature gradient and hence the heat transfer 
rate is seen to increase with an increase in <r for a 
particular value of n. Figure 2 shows that for a given 
value of n. an increase in the buoyancy parameter 5, 
increases the slip velocity at the wall. Also, as n 
increases the momentum boundary layer thickness 
decreases for a given value of rr. It should be men- 
tioned here that from equation (7) and boundary con- 
dition (9), one can obtain 

and 

f’ = 5re+ I (49) 

f’(fn 0) = 5rt 1. (50) 

Figure 2 shows that the predicted results agree well 
with equation (50). 

To find the local Nusselt number and the local wall 
shear stress, one needs to know the values of - e’(&, 0) 
andf”(& 0). These quantities at selected values of & 
are listed in Table 1 for different values of n. The local 
Nusselt numbers Nu,~ in terms of Nu,Pe, “’ for values 
of the exponent n of 0, 0.5. and 1 are shown in Fig. 3 
for the entire mixed convection regime. From Fig. 3, it 
is seen that a higher Nusselt number occurs at higher 
values of n and &-. This implies that the stronger the 
buoyancy force, the larger the surface heat transfer 
rate will be. The domains of pure forced convection, 
mixed convection and pure free convection can be 
established from the present results based on a 5% 
departure in the local Nusselt number from the pure 
forced convection limit and from the pure free con- 
vection limit. They are listed in Table 2. 

For practical purposes, correlation equations were 
developed for the local Nusselt numbers. By using the 
cubic spline interpolation technique the local Nusselt 
number for pure forced convection in the range of 
0 ,< n < I can be correlated by 

where 

Nur = g,(n)Pe.J” (51) 

g,(n) = 0.5650+0.763ln-0.2813n2+0.0821n’. (52) 



I490 J. C. HSIEH EI a/ 

Table I Values of - O’(cr, 0) andj”(<,, 0) at selected values of rr for different n values 
(VWT case) 

- O’(&. 0) /“(6r. 0) 

ir = RaJPe, I, = 0 I1 = 0.5 n = I.0 n=O II = 0.5 n = I.0 

0 
0.5 
I.0 
IO 
20 
30 
40 
50 
100 
500 

IO00 

0.5642 0.8862 I.1284 0 0 0 
0.6474 I .0428 1.3339 -0.3237 -0.5215 -0.6670 
0.7206 I.1780 1.5109 -0.7206 -I.1780 -1.5109 
1.5163 2.5960 3.3591 -15.163 -25.860 -33.591 
2.0665 3.5602 4.6128 -41.329 -71.204 -92.256 
2.498 I 4.3140 5.5924 -74.944 - 129.42 -167.77 
2.8665 4.9545 6.4244 - 114.62 - 198.18 -256.98 
3.1909 5.5212 7.1605 - 159.54 -276.06 -358.02 
4.4763 7.7570 10.063 -447.62 -775.70 -1006.3 
9.9555 17.264 22.389 -4977.7 -8631.9 -11195 
14.090 24.419 31.643 - 14090 -24419 -31643 

<, = PeJRa, -O’,(L 0) ./‘;(5.. 0) 

0 (&= ‘rn) 0.4438 0.7704 I .oooo -0.4438 -0.7704 - I .oooo 

Table 2. Range of 5,. values for pure forced convection, mixed convection, and 
pure free convection (VW-T case) 

Range of t;( = Ra,/Pe, values 
Exponent 

II Forced convection Mixed convection Free convection 

0 o-O.16 0.16-16.4 16.4~~ 
0.5 o-O.13 0.13-13.3 13.3-m 
I.0 t30.12 0.12-12.5 12.5~cc 

For the case of pure free convection, the cor- the pure forced and pure free convection within an 
responding correlation equation for the local Nusselt error of less than 2% respectively. 
number is given by Following Churchill [9] the correlation equation for 

NM, = gJn)Ra.J” (53) 
the local Nusselt number in mixed convection can be 
expressed as 

where 

g>(n) = 0.4457+0.8099n-0.3831n’+0.1286n3. (54) (55) 

Equations (51) and (53) fit the computed results for For the present problem the correlation equation for 

I 

-‘-.- Free ConvectIon Asymptote 
.----- Forced Convection Asymptote 

FIG. 

10-l 10-l 1 I 

10-3 10-3 10-z 10-z 10-l 10-l 100 100 10’ 10’ 102 102 10’ 10’ 

tr cr 

Local Nusselt number variation for mixed convection with variable wall temperature Local Nusselt number variation for mixed convection with variable wall temperature (VWT). 
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the local mixed convection Nusselt number can be 
represented by 

p ‘jp 
] } . (56) 

The average Nusselt numbers Nu for pure forced 
convection and pure free convection are found to be 

Nur = 29, (n) Pe: ’ 

Nu, = & g?(n) Ra:, ’ 

where Nu, and Nu, are the expressions of NM for pure 
forced convection and pure free convection, respec- 
tively. 

The corresponding correlation equation for the 
average mixed convection Nusselt number Nu can be 
expressed by 

NuPe; ‘I’ 

2.9, (n) 

2g&)(Ra,./Pe,.)“’ JJ ‘+ (59) 

w + 1) 9 I (?I) II. 
With an exponent value of p = 2 equations (56) and 
(59) are found to correlate very well with the predicted 
results. respectively from equations (I 4) and ( l5), giv- 
ing a maximum deviation of less than 0.4% between 
the correlated and the predicted mixed convection 
Nusselt numbers for the range of 0 < n < 1 over the 
entire regime of mixed convection. When p = 3 is 
used, the maximum deviation between the correlated 
and predicted values is about 10%. 

Power-h variation of surfhce lleat.fius 
The results for @(cl, q)/O(<r,O) and F([r,q), the 

temperature and velocity profiles, for -0.5 < m < 1 
are illustrated in Figs. 4 and 5. The behaviors of the 
temperature and velocity profiles for the variable 
surface heat flux case are similar to those for the 
variable wall temperature case presented earlier. 

The values of I/@(&, 0) and F”([,-, 0) for the various 
nz values are listed in Table 3 for selected ir values. 
One can see from Table 3 that the value of F”(& 0) is 

F1c.4. 

- m=-05 
m=o 

.--. m=l 

Dimensionless temperature profiles at selected values 
of cr and m (VHF case). 

10 

FG. 5. Dimensionless velocity profiles at selected values of 
ir and ,?I (VHF case). 

exactly equal to the value of -cl and is not a function 
of 1~. This is so, because from equation (29) and 
boundary condition (31) one can obtain 

F”((,,O) = -&. 

Local Nusselt numbers in terms of Nu,Pe; ’ ’ for 
different values of the exponent m are shown in Fig. 
6. The trends and behaviors of these curves are similar 
to those described for the case of variable wall tem- 
perature, because the buoyancy and forced flow effects 
between the two cases are similar. The domains for 
pure forced convection, mixed convection and pure 
free convection are shown in Table 4. Calculations of 
these values are also based on a 5% departure in the 
local Nusselt number from pure forced convection or 
pure free convection limit. 

The local Nusselt number correlation equations for 
pure forced convection and pure free convection in 
the range -0.5 < m < I are given by 

Nur = g,(m)Pe!. ’ (61) 

Nu, = g&n) Ra,* ’ ” (62) 

where 

g,(m) = 0.8864+0.5488,n-0.1559m’+0.0516rrr’ 

(63) 

g&7) = 0.7718+0.3043m-0.1189,n’+0.0444m~. 

(64) 

Equations (61) and (62) fit the computed results for 
pure forced and pure free convection within an error 
of less than 2%. 

The correlation equation for the local Nusselt num- 
ber in mixed convection can be represented by 

Nu, Pe,; Ii’ 

93h) 

= l+ g,(m)(Ra,*/Pe?“)“3 p “O 

i [ 93(m) II (65) 

and the average Nusselt numbers for pure forced, pure 
free and mixed convection can be expressed, respec- 
tively, by 
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Table 3. Values of I/@(<,. 0) and F”(&, 0) at selected values of& for different 
nt values (VHF case) 

1 ml, 0) F”(i,, 0) 

ir = Ru:/Pe; ’ n, = -0.5 M = 0 n1 = 0.5 M = 1.0 all ht 

0 
0.5 
1.0 
IO 
20 
30 
40 
so 
100 
500 

1000 

0.5642 0.8863 I.1284 I .3294 
0.6825 I .0099 I .2550 I .4579 
0.7625 I.1017 I .3530 I.5601 
I .3401 I .8252 2.1658 2.4386 
I .6482 2.2245 2.6245 2.9425 
I .86X0 2.51 I4 2.9556 3.3074 
2.044s 2.742s 3.2227 3.6023 
2.1942 2.9389 3.4502 3.8537 
2.741 I 3.658 I 4.2843 4.7768 
4.6298 6.1234 7.2054 8.0165 
5.8361 7.7150 8.998 I 10.063 

0 
-0.5 
- I.0 
-10 
-20 
-30 
-40 
-50 

-100 
- 500 

- 1000 

&, = PeJRu:” l/@,(i”. 0) F’;(i,. 0) 

O([,= co) 0.5818 0.7715 0.8998 I .oooo - I.0 

Table 4. Range of ir values for pure forced convection. mixed convection, and 
pure free convection (VHF case) 

Range of ir = Ra:/Pe;“’ values 
Exuonent 

n* 

-0.5 
0 

0.5 
I.0 

Forced convection 

o-O.09 
CM.15 
OJI.20 
o-o.24 

Mixed convection 

0.09-16.8 
0.15-27.9 
0.20-36.8 
0.2444.2 

Free convection 

16.8&X 
27.9%X 
36.8-w 
44.2-a 

Nu, = 2g,(m)Pe;‘2 (66) very well with the predicted numerical results, respect- 

3 ively from equations (36) and (37), with a maximum 
Nu, = ~ ,,, + 2 s4(m)fw Ii3 (67) deviation of less than 5% between the predicted and 

correlated values for the range -0.5 < m < 1 over 

NuPe, Ii’ 

%3(m) 
= I+ 

1 [ 

3gJ(m)(Rat/Peil’?)‘~’ 1 c the entire regime of mixed convection. However, the 

2(m+2)g,(m) 11 . 
(68) maximum deviation increases to about 7% when 

p = 2 is used. 
When p = 3 is used, equations (65) and (68) correlate To the best knowledge of the authors, there are no 

I -.-.-. Free Convection Asymptote 
.--___ Forced Convection Asymptote 

FIG. 6. Local Nusselt number variation for mixed convection with variable surface heat flux (VHF). 
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experimental data reported for mixed convection in 
boundary layer flow along a vertical plate in porous 
media. However, the present results for pure free con- 
vection (i.e. 5, = 0) under uniform wall temperature 
can be compared with the experimental work of 
Cheng et al. [IO]. The predicted local Nusselt number 
Nu,Ra; ‘I’ for 5, = 0 and n = 0 listed in Table I agrees 
well with the experimental data when Ra, is less than 
500. It may then be concluded that the non-Darcian 
effect will become important when Ra, 2 500. In the 
absence ofexperimental data, the present results based 
on Darcy’s law are expected to be valid for Pe,, and 
Ra, that are smaller than 1000. 

CONCLUDING REMARKS 

In this paper, mixed convection from a vertical 
flat plate in saturated porous media has been studied 
analytically for two surface heating conditions, 
power-law variation in the wall temperature and 
power-law variation in the surface heat flux. Numeri- 
cal results are presented for both heating conditions. 
They include dimensionless temperature and velocity 
profiles. and Nusselt numbers. A 5% rule is used to 
establish the regime where mixed convection becomes 
important for the various surface heating conditions. 
General correlation equations for the local and aver- 
age Nusselt numbers are also developed for the entire 
regime of mixed convection. The correlation equa- 
tions agree well with calculated numerical results 
within a maximum deviation of less than 5%. 
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